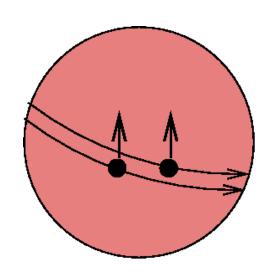
Nuclear Structure from Gamma-Ray Spectroscopy

2019 Postgraduate Lectures

Lecture 2: Low-spin nuclear structure

Time Reversed Orbits



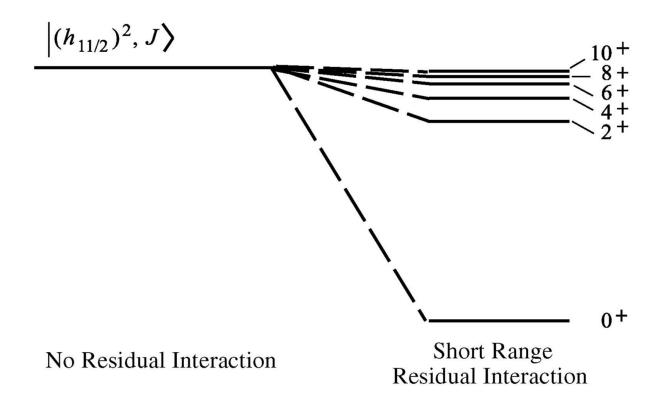
Pauli forbidden

- The greatest overlap would occur if two particles could orbit in the same level
- Not allowed (PEP)!

Time reversed: two interactions per revolution

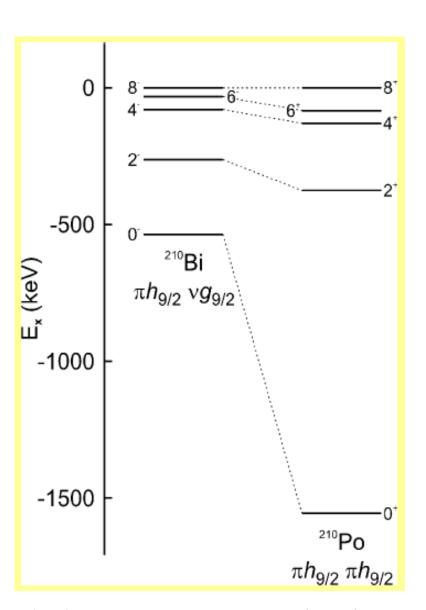
- The next greatest overlap occurs for particles in 'time reversed' orbits
- The spins cancel to give $I^{\pi} = O^{+}$

Coupling Two Particles



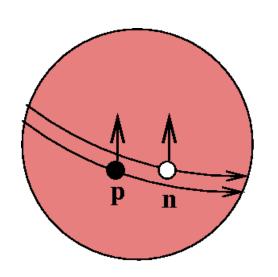
 The short-range (pairing) residual interaction yields an energetically favoured 0+ state

Favoured O+ Ground State

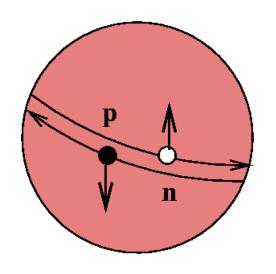


- In ²¹⁰Po the configuration outside the doubly closed shell core of ²⁰⁸Pb is $(\pi h_{9/2})^2$.
- If there were <u>no</u> interaction between these two protons, i.e. if they behaved like independent particles, the various (h_{9/2})² spin couplings, which reflect the orbital alignments, would lead to states <u>degenerate</u> in energy.
- Correlated pair of two protons
- Energy gain ≈ 2∆

Neutron-Proton Pairing



Spin I = 1 Isospin T = 0 The concept of superconductivity, related to like nucleon pairs coupled to spin I = 0 and isospin T = 1, can be extended to neutronproton pairs with T = 0

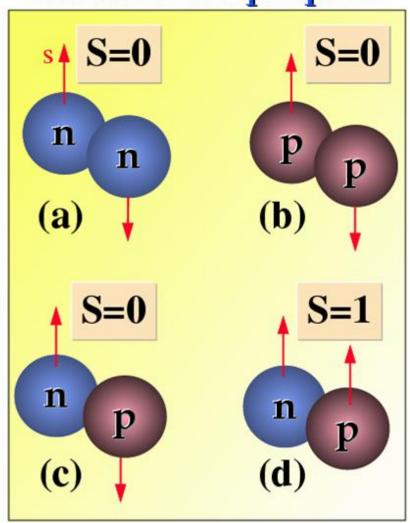


Spin I = 0 Isospin T = 0

- The greatest overlap occurs if the particles are in the same orbitals
- Strong neutron-proton pairing can occur for nuclei with N = Z

Nucleon Pairing

nucleonic Cooper pairs



- The isovector (T=1)
 n-p pairing (c) is
 similar to the n-n (a)
 and p-p (b) pairing
- The isoscalar (T=0)
 n-p pairing (d) is
 clearly different

Moment of Inertia

- Deformation provides an element of anisotropy allowing the definition of a nuclear orientation and the possibility of observing rotation
- Classically the energy associated with rotation is:

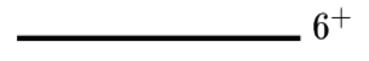
$$E_{rot} = \frac{1}{2} \Im \omega^2 = I^2 / 2 \Im ; \omega = I / \Im$$

 Collective rotation involves the coherent contributions from many nucleons and gives rise to a smooth relation between energy and spin:

$$E = (\hbar^2/2\Im) I[I + 1]$$

which defines the 'static' moment of inertia, sometimes denoted $\mathfrak{I}^{(0)}$

Energy Levels of a Rotor



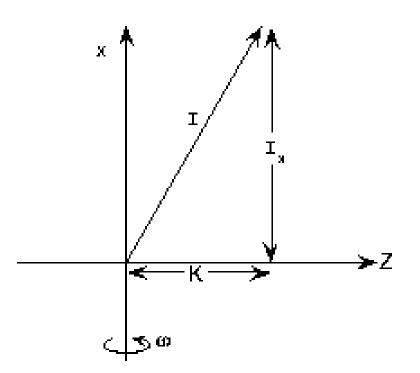
 The energy levels of a rotor are proportional to I(I+1)

 The ratios of energy levels for a rotor are:

$$E(4^+)/E(2^+) = 3.333$$

$$E(6^+)/E(2^+) = 7.0$$

Rotational Frequency



The intensive variable w (rotation about the x axis) is related to the extensive variable I by the relation:

$$\hbar \omega = dE/dI_{\times}$$

$$\approx \frac{1}{2}[E(I+1) - E(I-1)]$$

• Here I_x is the projection of I onto the rotation axis (x):

$$I_{\times} = \int [I(I+1)-K^2] \hbar$$

The rotational frequency \mathbf{w} is distinct from the oscillator quantum \mathbf{w}_0 . In practice $\mathbf{w} \ll \mathbf{w}_0$ and the collective rotation can be considered as an adiabatic motion

Rigid Body Moment of Inertia

The rigid-body moment of inertia for a spherical nucleus is:

$$\Im_{\text{rig}}$$
 = (2/5) MR² = (2/5) $A^{5/3}$ m_N r₀² where m_N is the mass of a nucleon (M = A m_N) and R = r₀ $A^{1/3}$ with r₀ = 1.2 fm

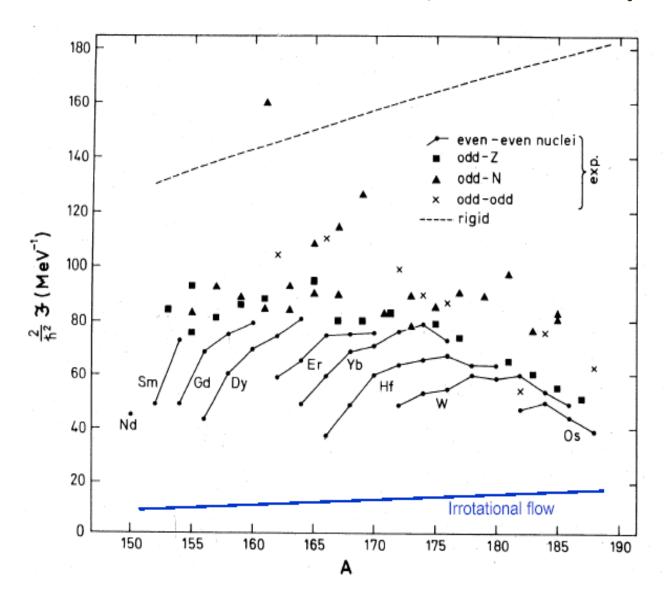
For a deformed nucleus:

$$\Im_{\text{rig}} = (2/5) A^{5/3} \, \text{m}_{\text{N}} \, \text{r}_{\text{O}}^{2} \, [1 + 1/3 \, \delta]$$

where $\delta = \Delta R / R_{\text{O}}$

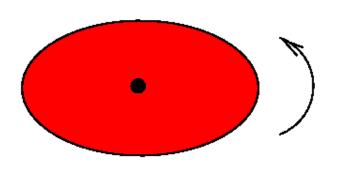
 Typically nuclear moments of inertia are less than 50% of the rigid-body value at low spin

Nuclear Moments of Inertia

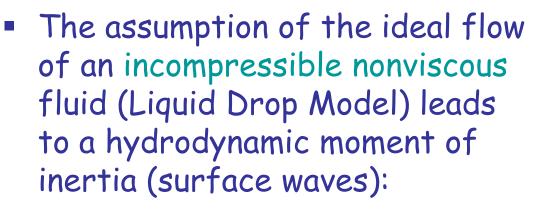


Nuclear
 moments of
 inertia are
 lower than the
 rigid-body
 value - a
 consequence
 of nuclear
 pairing

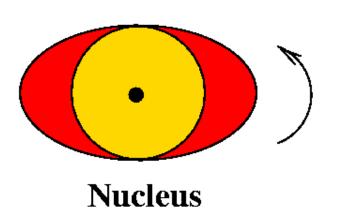
Nuclear Rotation



Rigid body

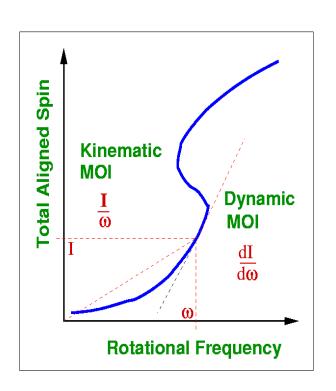


$$\mathfrak{I}_{\text{hydro}} = \mathfrak{I}_{\text{rig}} \delta^2$$



- This estimate is much too low!
- We require short-range <u>pairing</u> correlations to account for the experimental values

Kinematic and Dynamic MoI's



• Assuming maximum alignment on the x-axis ($I_x \sim I$), the kinematic moment of inertia is defined:

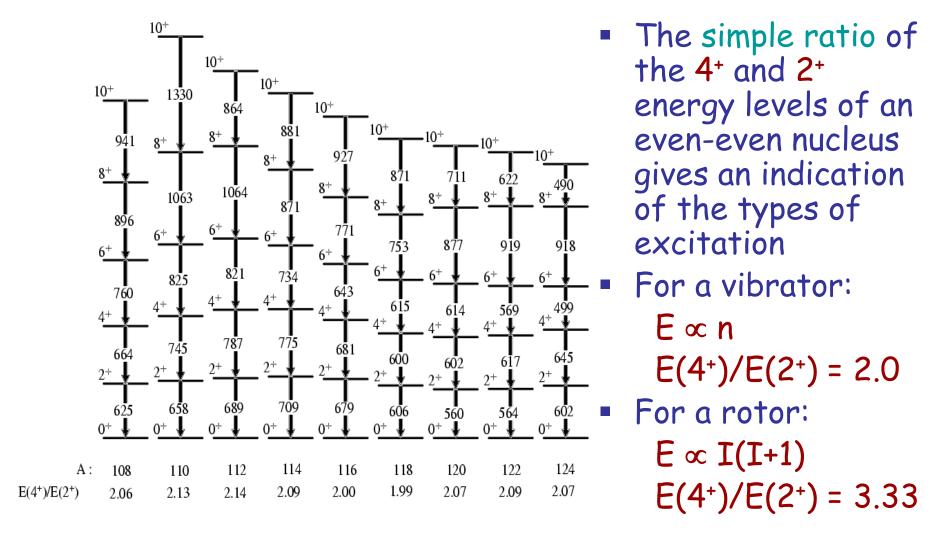
$$\mathfrak{I}^{(1)} = (\hbar^2 I) [dE(I)/dI]^{-1} = \hbar I/\omega$$

 The dynamic moment of inertia (response of system to a force) is:

$$\mathfrak{I}^{(2)} = (\hbar^2) [d^2 E(I)/dI^2]^{-1} = \hbar dI/dw$$

- Note that $\mathfrak{I}^{(2)} = \mathfrak{I}^{(1)} + w \, d\mathfrak{I}^{(1)} / dw$
- Rigid body: $\mathfrak{I}^{(1)} = \mathfrak{I}^{(2)}$ Nucleus at high spin: $\mathfrak{I}^{(1)} \approx \mathfrak{I}^{(2)}$

Vibration or Rotation?



Te (Z = 52) systematics show that they are vibrational

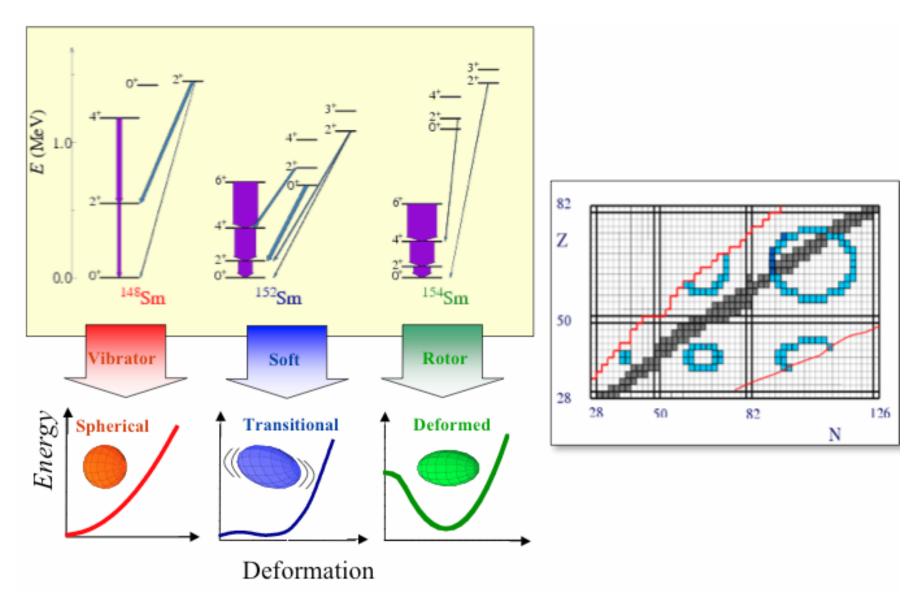
Development of Collectivity

Another limiting value of the E(4+)/E(2+) ratio is 2.5, corresponding to a y-soft rotor, or y-unstable oscillator (O(6) limit of the interacting boson model: IBM)

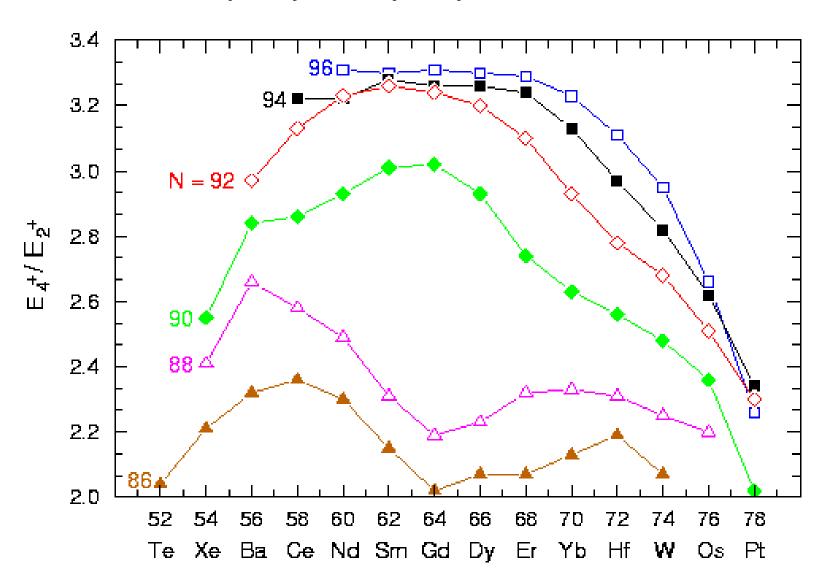
• Adding protons to tin:

Nucleus	$E(4^+)/E(2^+)$	<u>Behaviour</u>
¹¹⁶ Sn (Z=50)	1.65	spherical
¹¹⁸ Te (Z=52)	1.99	vibrational
¹²⁰ Xe (Z=54)	2.47	y-soft
¹²² Ba (Z=56)	2.89	transitional
¹²⁴ Ce (Z=58)	3.15	rotational

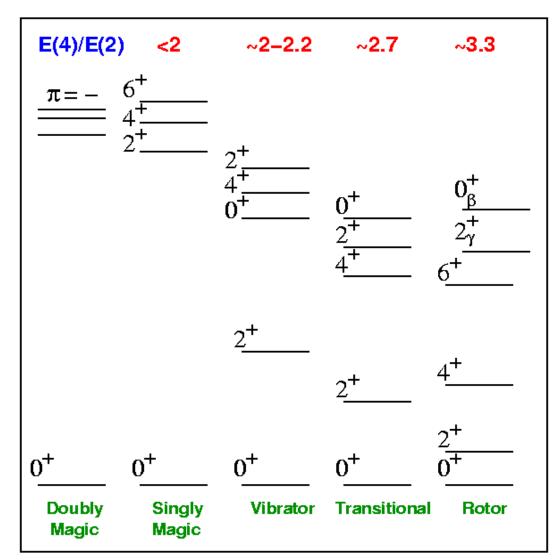
Transitional Nuclei



$E(4^+)/E(2^+)$ Values

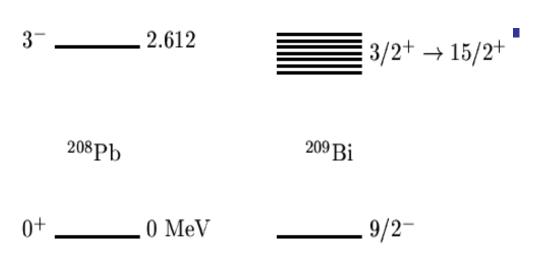


Evolution of Structure



- This diagram shows the evolution of level structure from closed shell (doubly magic, spherical) to midshell (rotational, deformed) nuclei
- The corresponding E(4+)/E(2+) ratios are also shown

Particle-Vibration Coupling



- For an odd-A nucleus near a closed shell with small deformation, the odd particle may couple to the surface vibrations of the core
- The Hamiltonian is: $H = [H_{int} + H_{vib}] + H_{coup} = H_0 + H_{coup}$
- If we assume the interaction $H_{coup} \rightarrow 0$, the motions are decoupled from one another and the eigenfunctions will take a product form: $H_0 \Psi = E \Psi$ with $\Psi = \Psi_{int} \Psi_{vib}$
- Consider coupling an $h_{9/2}$ proton to the 3^- state in 208 Pb, forming states in 209 Bi. Seven 'degenerate' states are formed by coupling spin vectors 3 and 9/2

Rotation-Vibration Model

- The RVM model considers a well deformed (static), axially symmetric even-even nucleus and allows small fluctuations (dynamic) about the equilibrium shape β_0
- After a 'few' approximations the energy spectrum may be written as:

$$E = \frac{1}{2} \epsilon_R [I(I+1) - K^2] + \epsilon_{\beta} n_{\beta} + \epsilon_{\gamma} n_{\gamma}$$
the a parameters are energies associated associations.

where the ϵ parameters are energies associated with rotations and vibrations

• ϵ_R is related to β_0 and the nuclear moment of inertia \mathfrak{I}

RVM Quantum Numbers

The quantum numbers are constrained such that:

```
K = 0, 2, 4,...

I = 0, 2, 4,... for K = 0

= K, K+1, K+2,... for K \neq 0

n_{\beta} = 0, 1, 2,...

n_{\nu} = K/2, K/2 + 2, K/2 + 4,...
```

So what are the possible low-lying energy levels?

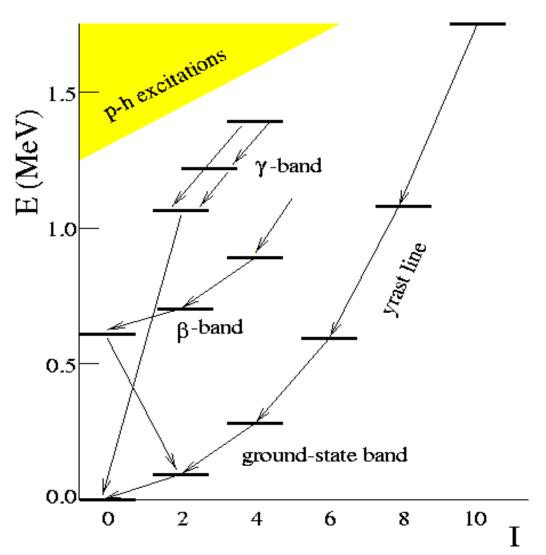
RVM Band Structure

- For $K = n_{\beta} = n_{\gamma} = 0$, we expect a set of levels: $E = \frac{1}{2} \varepsilon_{R} \ I(I+1)$ with I = 0, 2, 4,... 'ground-state band' represents pure rotation
- A rotational band can be built on a β vibration by setting $n_{\beta} = 1$. The energy levels are:

$$E = \epsilon_{\beta} + \frac{1}{2}\epsilon_{R} I(I+1)$$
again with $I = 0, 2, 4,...$ ' β band' (α_{20} varies)

To include a γ vibration requires a nonzero K. So beginning with K=2 and $n_{\gamma}=1$, the levels are: $E=\varepsilon_{\gamma}+\tfrac{1}{2}\varepsilon_{R}\left[I(I+1)-4\right]$ this time with I=2,3,4,... ' γ band' (α_{22} varies)

B and y Bands

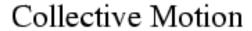


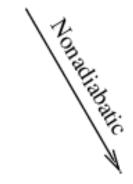
- β-vibrational and γ-vibrational bands coexist with the rotational groundstate band in deformed nuclei
- Such bands are found predominantly in the regions:

 $150 \le A \le 190 \text{ and } A \ge 230$

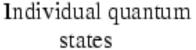
which are far from shell closures

Nonadiabatic Vibration





 For the surface modes of vibration, the frequency (velocity) of the oscillations is much smaller than that of the individual nucleonic motion

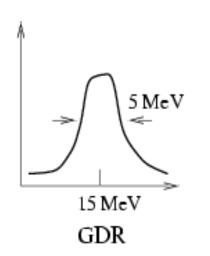


__ =

1 MeV

Rotational Vibrational bands states

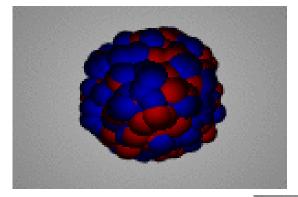
Classical resonances



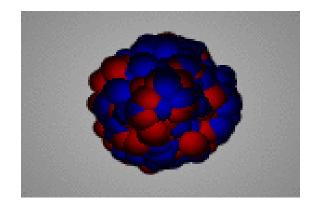
The motion is 'adiabatic' (as is nuclear rotation) and individual quantum levels are evident

 However, 'nonadiabatic' collective motion can occur: 'giant resonances'

Giant Resonances

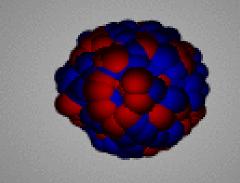


Monopole L = 0

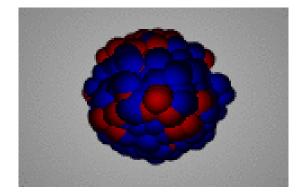


Isoscalar

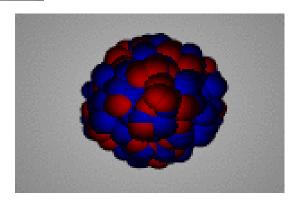
Dipole L = 1



Isovector



Quadrupole L = 2



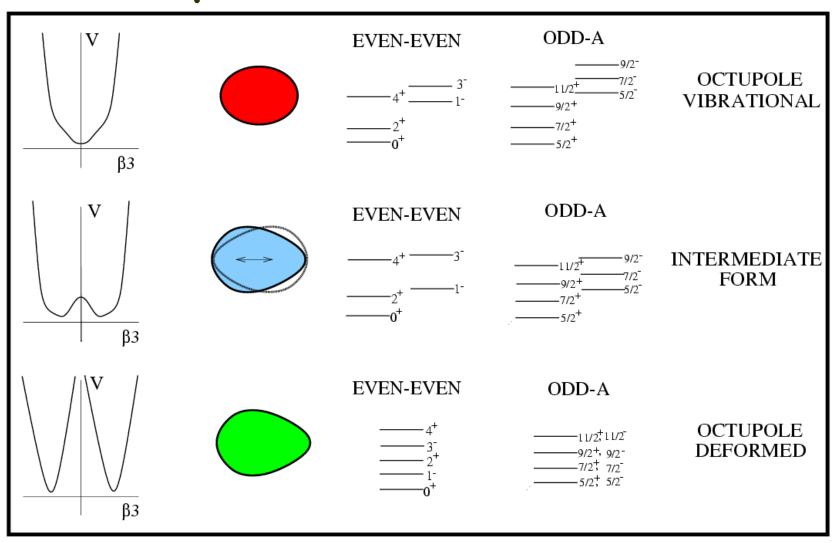
Reflection Asymmetry

■ If a nucleus is 'reflection asymmetric' (i.e. the odd multipole deformation parameters are non-zero, e.g. $\beta_3 \neq 0$ is the most important) then the nuclear wavefunction in its intrinsic frame is not an eigenvalue of the parity operator:

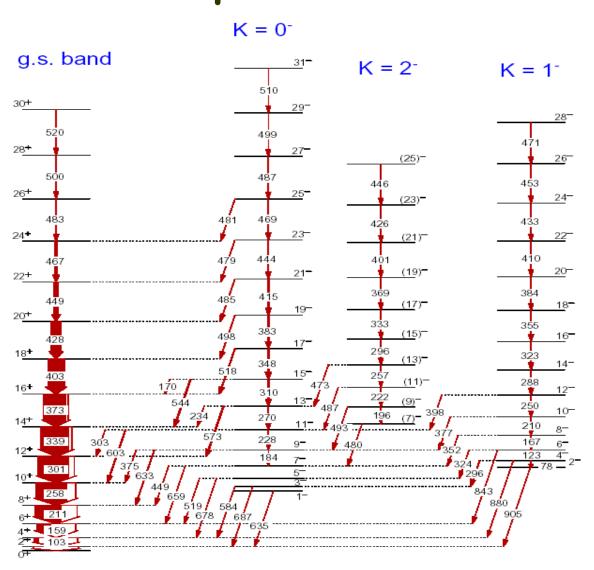
$$\Psi^{2}(x,y,z) \neq \Psi^{2}(-x,-y,-z)$$

- If $\beta_3 \neq 0$ for a nucleus it is said to possess octupole deformation
- The deformation can however be static, $\langle \beta_3 \rangle \neq 0$, or dynamic, $\langle \beta_3 \rangle = 0$ (oscillating octopule shape)

Octupole Band Structures



Octupole Vibrations in ²³⁸U



 This nucleus shows three octupole vibrational bands with different K values

Parity Splitting

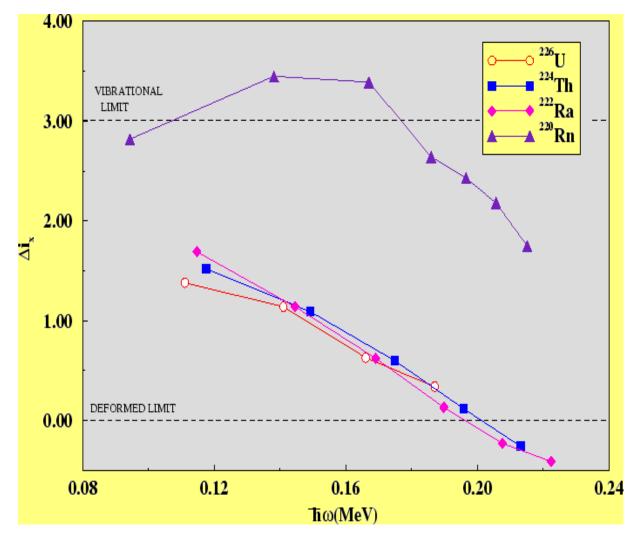
- For a static octupole shape, the negative parity states are interleaved (midway between) with the positive parity states
- A measure of such a feature is the 'parity splitting', defined as:

$$\delta E = E(I)^{-} - \frac{1}{2}[E(I+1)^{+} + E(I-1)^{+}]$$

- This quantity generally decreases towards zero with increasing spin and suggests that rotation may stabilise the octupole shape
- A similar quantity is the difference in alignment:

$$\Delta i_x = i_x - i_x$$

Octupole Vibration or Deformed?



 For an octupole vibrational phonon coupled to the positiveparity states:

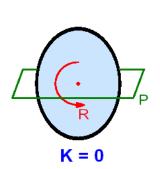
$$\Delta i_x = 3 \hbar$$

 For a static octupole deformation:

$$\Delta i_x = 0$$

Reflection (A) symmetry

K = angular momentum projection on symmetry axis



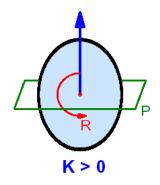
P: parity (reflection)
R: rotation by 180°
T: time reversal

6+

4**+**

 $\frac{2^{+}}{0^{+}}$ K = 0

1 band



P: parity (reflection)
RT: rotation by 180°
AND time reversal
(which reverses K)

(<u>K+6</u>)^π

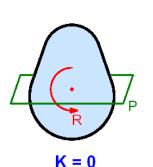
 $(K+5)^{\pi}$

(<u>K+4</u>)^π

 $(\frac{(K+2)^{\pi}}{K^{\pi}} \qquad (K+1)^{\pi}$ K > 0

2 bands

K = angular momentum projection on symmetry axis



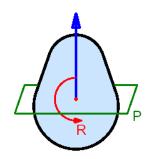
RP: rotation & reflection
T: time reversal

6**+**

3<u>-</u>

2+ 0+ 1-K = 0

2 bands



K > 0

RPT: need all three operations

(K+5)⁺

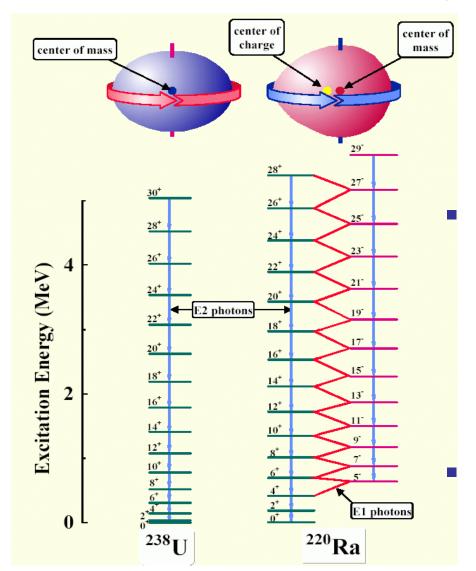
 $(\underline{\mathsf{K+4}})^+$ $(\underline{\mathsf{K+4}})^-$

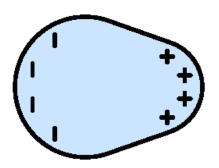
(K+3)⁺

 $(K+2)^{+}$ $(K+2)^{-}$ $(K+1)^{-}$ $(K+1)^{+}$ K^{+} K^{-} K > 0

4 bands

Electric Dipole Moment





 In a nucleus with octupole deformation, the centre of mass and centre of charge tend to separate, creating a non-zero electric dipole moment

Bands of opposite parity connected by strong E1 transitions occur

Enhanced E1 Transitions

- In heavy nuclei, E1 strengths typically lie between 10⁻⁴ and 10⁻⁷ Wu
- In nuclei with octupole deformation, the E1 strengths can be much higher: 10⁻³ 10⁻² Wu
- The intrinsic dipole moment of an octupole deformed nucleus is:

$$D_0 = C_{LD} A Z e \beta_2 \beta_3$$
 with the liquid drop constant $C_{LD} = 0.0007$ fm

 In a Strutinsky type approach, macroscopic and microscopic effects can be considered and:

$$D = D_{\text{macro}} + D_{\text{shell}}$$

Experimental Dipole Moments

- Experimental values of D_0 can be obtained by measuring B(E1)/B(E2) ratios, related simply to γ -ray energies and intensities
- The B(E1) reduced transition rate is: $B(E1;I\rightarrow I-1) = (3/4\pi) e^2 D_0^2 |\langle I_i K_i 10 | I_f K_f \rangle|^2$
- The B(E2) reduced transition rate is: $B(E2;I\rightarrow I-2) = (5/16\pi) e^{2}Q_{0}^{2} |\langle I_{i} K_{i} 20 | I_{f} K_{f} \rangle|^{2}$
- Hence if Q_0 is known (e.g. from the quadrupole deformation $β_2$) then a value for D_0 can be extracted, i.e: $D_0 = \sqrt{5B(E1)/16B(E2)} Q_0$